DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

QUESTION BANK

FOR

(R15) IV B.TECH II SEM (2019 – 20)

MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTU, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – 'A' Grade, ISO 9001:2008 Certified)

Maisammaguda, Dhulapally, Secunderabad – 500100.

INDEX

S.NO	NAME OF THE SUBJECT
1	RADAR SYSTEMS
2	WIRELESS COMMUNICATIONS AND NETWORKS

[10M]

Code No: R15A0429

Transmitter.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

IV B. Tech II Semester Regular Examinations, April/ May 2019 Radar Systems

(ECE)										
Roll No										

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 25 marks and Answer all questions.

Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART A - (25Marks)

Q1 (a)	Write the different applications of radar.	[3M]						
(a)	Define multiple time around echoes.	[2M]						
(b)	What is Doppler effect?	[2M]						
(d)	Write the application of multiple-frequency CW radar?	[3M]						
(e)	How blind speed problems can be overcome in pulse radar system?	[3M]						
(f)	What is the role of a delay line canceller in MTI Radar?	[2M]						
(g)	What is the difference between MTI radar & pulse Doppler radar?	[3M]						
(h)	What do you understand by low angle tracking?	[2M]						
(i)	What is noise figure?	[2M]						
(j)	Explain about A scope and PPI display?	[3M]						
	PART-R (50 MARKS)							

PART-B (50 MARKS) SECTION-I

- $\mathbf{Q2}$. (a) A radar system operates at 3 cm wavelength with peak pulse power of 100 KW. If its minimum detectable signal is $4\mu W$, radar cross section area is 12 m^2 & effective antenna aperture is 6 m^2 . Calculate maximum range of the radar. [6M]
 - (b). Derive the simple Radar Range Equation. [4M]

OR

Q3 (a) Derive the expression for probability of false alarm (P _{fa}), when only noise is present	ent at the
input of the IF Amplifier.	[5M]
(b) Briefly explain various types of losses taking place in radar systems.	[5M]
<u>SECTION-II</u>	
Q4. (a) How isolation between transmitter and receiver is obtained in CW radar.	[5M]
(b) Discuss about the Multiple Frequency CW Radar.	[5M]
OR	
Q5. (a) Transmit frequency of a CW radar is 5GHz. Calculate the Doppler frequency see	en by a
Stationary Radar when the target radial velocity is 100 km/h.	[4M]
(a) Draw the block diagram of a CW radar and explain its working principle.	[6M]
SECTION-III	
Q6. Describe the operation of MTI Radar with power amplifier transmitter and power o	scillator

OR

Q7. With the help of block diagram explain the operation of amplitude comparison monopulse tracking radar for one angular coordinate. [10M] SECTION-IV Q8. What is Matched filter receiver? Derive expression for the response of Matched filter characteristics. [10M] OR Q9. (a) Draw and explain the block diagram of a cross-correlation receiver. [6M] (b) Discuss in brief about matched filter with nonwhite noise. [4M] **SECTION-V** Q10. Write about radiation pattern of phased array antennas with suitable equations. And also write applications of phased array antennas. [10M] Q11. (a) Explain about the antennas used in radar systems. [6M] (b) List the advantages and limitations of array antennas. [4M]

Code No: R15A0429

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

IV B. Tech II Semester Advance Supplementary Examinations, May 2019 Radar Systems

				(E	CE)						
	Roll No										
Time: 3 hours	ion nonce contains	trrio	n out (nd D			M	lax. I	Marks: 75	,

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 25 marks and Answer all questions.

Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART-A (25 Marks)

	1AK1-A (25 Marks)							
1). a	Explain what is meant by false alarm.	[2M]						
b	What is meant by minimum detectable signal.							
c	Why Stationary objects are most easily detected by an FM system?							
d	Calculate Doppler frequency of an aircraft moving with a speed of 550Knots when	[3M]						
	the CW radar is working with λ =8cm?							
e	Describe the Early-late range gates with respect to Tracking in range.	[2M]						
f	Differentiate MTI and pulse Doppler Radar	[3M]						
g	Explain the frequency-response function of the filter	[2M]						
h	Discuss the efficiency of non-matched filters	[3M]						
i	Describe the coordinates are presented on a PPI scope?	[2M]						
j	Describe the noise figure of a receiver	[3M]						
· ·	PART-B (50 MARKS)							
	SECTION-I							
2	a) A Pulse Radar transmits a peak power of 1 Mega Watt. It has a PRT equal	[6M]						
	to 1000 micro sec and the transmitted pulse width is 1 micro sec. Calculate							
	(i)Maximum unambiguous range (ii) Average Power (iii)Duty Cycle (iv)	[4M]						
	Energy transmitted & (v) Bandwidth							
	b) Discuss the relation between the signal to noise ratio, the probability of							
	detection and the probability of false alarm							
	OR							
3	a) Write the simplified version of radar range equation and explain how	[5M]						
	this equation does not adequately describe the performance of practical							
	radar?							
	b) Explain system losses will effect on the radar range?	[5M]						
	SECTION-II							
4	a) Analyze the factors that limit the amount of isolation between Transmitter	[4M]						
	and Receiver of CW Radar.							
	b) Draw and explain the block diagram of CW Radar and write is	[6M]						
	applications.							

OR

	OK	
5	a) Discuss the effect of receiver bandwidth on the efficiency of detection and performance of a CW Doppler radar	[6M]
	b) Determine the Range and Doppler velocity of an approaching target using a triangular modulation FMCW Radar. Given: Beat frequency fb(up) = 15KHz and fb (down) = 25KHz, modulating frequency: 1MHz, Δf: 1KHz and Operating frequency: 3Ghz SECTION-III	[4M]
6	Compare and contrast the situations with a Power amplifier and Power oscillator in the transmitter of a MTI system with neat block diagrams	[10M]
	OR	
7	Why is amplitude comparison mono pulse more likely to be preferred over the phase comparison mono pulse and conical scan tracker over sequential lobbing, or lobe switching tracker? Explain.	[10M]
	SECTION-IV	
8	Explain the principle and characteristics of a Matched filter. Hence derive the expression for it's frequency response function OR	[10M]
9	Discuss the relation between the matched filter characteristics and correlation detection in detail	[10M]
	SECTION-V	
10	a) Derive an expression for the effective Noise figure of two cascaded networks.b) Briefly explain the concept of beam steering of Phased array antennas OR	[5M] [5M]
11	a) Write the applications, advantages and disadvantages of Phased Array Antennas.	[6M]
	b) Discuss the types of displays in RADAR	[4M]

[5+5]

Code No: 118EA

b)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year II Semester Examinations, April - 2018 RADAR SYSTEMS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART - A **(25 Marks)** Define signal to noise ratio. 1.a) [2] b) What is maximum unambiguous range? [3] Give the advantages of FM - CW radar. c) [2] Write the applications of CW radar. d) [3] What is butterfly shape on radar receiver? e) [2] What is delay line canceller? f) [3] Define squint-angle. [2] g) h) List the disadvantages of sequential lobbing. [3] Define noise temperature. i) [2] j) Write about correlation function. [3] PART - B (50 Marks) 2.a) Describe the operation of radar block diagram. Derive modified radar range equation. b) [5+5]OR 3.a) Explain, how to minimize the false alarm. With the help of expressions explain radar transmitter power. b) [5+5]Draw and explain CW radar with nonzero IF receiver. 4.a) Write the merits and demerits of continuous wave radar. b) [6+4]With suitable waveforms discuss frequency time relationships in FM-CW radar. 5.a) Explain, how the various unwanted signals causes errors in FM altimeter. [5+5]b) Describe the operation of MTI Radar with power oscillator transmitter. 6.ab) Draw and explain three pulse canceller. [5+5]Write a short note on multiple pulse repetition frequencies. 7.a

What are the factors limits the MTI performance? Explain.

8.a) b) 9.a) b)	In mono pul the echo sig antennas, if t Discuss abou	splain the block of the angle θ =15°. It acquisition and	OR ennas are used to s at frequency of scanning parame	produce a phas f 1.5 GHz. Finters.	e difference of d	[5+5] 25° between between the [5+5]
11.a) b)) Draw and ex	plain balanced ty	OK		and and	[5+5]
			00O00	<u> </u>		
				JJ		
				JJ		

Code No: 118EA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year II Semester Examinations, June - 2018 RADAR SYSTEMS

(Electronics and Communication Engineering)

11		(Diectionics and Communication Fingmeering)	sand sand
	Time:	3 hours Max. Ma	rks: 75
	Note:	This question paper contains two parts A and B.	
		Part A is compulsory which carries 25 marks. Answer all questions in Part	A. Part B
		consists of 5 Units. Answer any one full question from each unit. Each question	n carries 10
		marks and may have a, b, c as sub questions.	
1/		PART-A JJ JJ	
			(25 Marks)
	1.a)	List the applications of Radar.	[2]
	b)	Discuss in brief about Pulse Repetition Frequency(PRF) and range ambiguities.	[3]
	c)	List the characteristics of FM-CW Radar.	[2]
: :	d)	Give the principle of Doppler effect.	[3]
	e)	What is Staggered PRF?	[2]
1/	f)	Explain the operation of MTI Radar.	[3]/
	g)	Explain about sequential lobing.	[2]
	h)	Give the principle of operation of conical scan.	[3]
	i)	What are the different types of antennas used in Radar?	[2]
	j)	Draw the block diagram of cross correlation receiver.	[3]
	2.a)	Obtain the Radar equation in terms of minimum detectable power and gains of tr	(50 Marks)
		and receiving antenna?	
	b)	Explain about integration of Radar pulses in detail.	[5+5]
	2 \	OR	
	3.a)	Calculate the minimum pulse interval and pulse repetition frequency required f	or Radar to
	L)	detect unambiguous targets up to a range of 125miles?	[5 , 5]
<i>J.J</i>	b)	Explain the terms integration loss and Radar cross section of a target.	[5+5]
	4.a)	Explain range and Doppler measurement in FM-CW Radar.	
	b)	What is the major limitation of CW Radar and how it can be overcome?	[5+5]
	0)	OR	
	5.a)	Explain the principle of operation of FM-CW Radar with using side band super	heterodyne
	- ·/	Receiver.	
	b)	Briefly discuss the FM-CW altimeter.	[5+5]

6.a) b) 7.a) b) 8.a) b) 9. 10.a	List and exp With the aid amplifier in How moving Differentiate Explain the Company of the Describe difference of the Discuss Mat	of the block diag the transmitter? g target is distingue e single -delay-lin concept of conica	oram, explain fully uish from stational e canceller and do al scan. OR king techniques.	operation of an ry target? ouble-delay-line	MTI system us	[5+5] sing a power [5+5] [5+5] [10]
11.	: :	: :	ons, advantages ar	JJ	: :	[10] , ,

[5+5]

Code No: 118EA

b)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year II Semester Examinations, May - 2017 **RADAR SYSTEMS**

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 75 **Note:** This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART - A (25 Marks) Describe various radar applications. 1.a) [2] b) Calculate the range of a target, if the time taken by the signal to travel and return is 100 micro seconds? Calculate the Doppler frequency of an aircraft moving with a speed of 550 Knots and c) when the CW radar is working with λ =8cms. Write about Doppler principle. d) [3] What are the differences between Pulse radar and Pulse Doppler radar? [2] e) f) Write about MTI radar parameters. [3] Discuss the sequential lobing tracking antenna mechanism. [2] g) Briefly explain the tracking radar and search radar system. h) [3] Give the comparison between the efficiency of matched and non matched filters. [2] i) Discuss in brief measuring of noise figure. j) [3] PART - B **(50 Marks)** What is minimum detectable signal? Calculate minimum receivable signal in a radar 2.a) receiver that has an IF bandwidth of 1.5 MHz and a 9-dB noise figure. Discuss in brief the radar range equation and modified radar range equation. b) [5+5]Discuss the radar cross section of the targets: Sphere, Flat Plate, Triangular trihedral. 3.a) b) Write about radar system losses. [5+5]4. Draw a block diagram of the FMCW radar and explain its operation. [10] OR Discuss the following a) Non-Zero IF receiver b) Isolation between the transmitter and 5. receiver. [10] 6.a) Explain MTI radar with a block diagram. Define the terms: Clutter attenuation, Sub-clutter visibility. b) [5+5]Discuss the principle of operation of Pulse Doppler Radar. 7.aExplain bind speed and the methods for reducing the effects of blind speed.

8. Explain with the help of a block diagram amplitude comparison monopulse radars for extracting error signals in both elevation and azimuth. [10]

ΛR

- 9.a) Define tracking in range and explain the split gate tracker method.
 - b) Explain the working of a monopulse radar with the help of a block diagram. [5+5]
- 10.a) What is meant by correlation? Explain cross correlation with the help of neat block diagram.
 - b) A radar receiver is connected to a 30 ohm resistance antenna that has an equivalent noise resistance of 25 ohm. Calculate the noise figure of the receiver and the equivalent noise temperature of the receiver. [5+5]

OR

- 11.a) Write about radiation pattern of phased array antennas with suitable equations.
 - b) Write about: i) beam steering ii) beamwidth of phased array antennas. [5+5]

---00O00---

MODEL PAPER –I R15 MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

IV B.Tech II Semester Examinations WIRELESS COMMUNICATIONS AND NETWORKS (R15A0432) (Electronics & Communication Engineering)

Time: 3 hours Max. Marks: 75marks

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 25 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART A (25 Marks)

 Write some examples for wireless communication system. Write a short note on cordless telephone systems? Define large scale propagation model? Explain about free space propagation model? What is Doppler shift? Explain impulse response model of a multipath channel? Write an IEEE standard name for Wi-Fi &Bluetooth? Explain Advantages & Disadvantages of WLAN? Define WLL? Explain briefly IEEE 802.11 medium access control? PART B (50marks)	[2M] [3M] [2M] [3M] [2M] [2M] [3M] [2M] [3M]			
2. a) Briefly explain mobile radio evolution.	[6M]			
b) Briefly compare the common wireless communication systems.	[4M]			
OR				
3. a) Explain about 2G and 3G cellular networks.	[6M]			
b) Explain about WLL and WLAN.	[4M]			
4. a) Write a short note on Fresnel zone geometry and Knife edge diffraction model?	[6M]			
b) Explain the terms signal penetration into buildings and Ray tracing and site specific modeling?				
OR				
5. a)Explain about reflection from perfect conductors and Ground reflection model.	[4M]			

b) Explain any two outdoor propagation models.	[6M]
6. a) What are factors influencing small scale fading?	[4M]
b) Explain briefly about parameters of mobile multipath channels?	[6M]
OR	
7. a) Explain different types of small scale fading?	[4M]
b) Explain briefly about Two -ray Rayleigh fading model?	[6M]
8. a) Explain different types of WLAN Topologies?	[5M]
b) Compare standards of I EEE 802.11 a, b, g and n standards?	[5M]
OR	
9. a) Explain briefly IEEE 802.11 medium access control?	[5M]
b) Explain briefly about WLAN & WLL?	[5M]
10. a) Explain the functional requirements of HYPERLAN.	[5M]
b) Explain the functioning of WATM with basic architecture.	[5M]
OR	
11. a)Explain about data oriented CDPD network.	[4M]
b) Write short note on GSM and GPRS	[6M]

MODEL PAPER –II MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

IV B.Tech II Semester Examinations WIRELESS COMMUNICATIONS AND NETWORKS (R15A0432) (Electronics & Communication Engineering)

Time: 3 hours Max. Marks: 75marks

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 25 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART A (25 Marks)

1.

a) Write a short note on cellular telephone systems?	[2M]		
b) Write a short note on 2G cellular systems?	[3M]		
c) What are the factors influencing small scale fading?	[2M]		
d) Name some of the outdoor propagation models?	[3M]		
e) What is Doppler spread?	[2M]		
f) What are statistical models for multiparty fading channels?	[3M]		
g) Define IEEE 802.11?	[2M]		
h) What are enhancements in IEEE 802.16?	[3M]		
i) Define HIPER LAN?	[2M]		
j) Explain briefly about Wireless ATM?	[3M]		
PART B (50marks)			
2. a) Briefly explain about paging systems.			
b) Briefly explain modern wireless communication systems.			
OR			
	[5M]		
3. a) Write note on trends in cellular radio and personal communications.			
b) Write note on Bluetooth and PAN.			
4. a) Explain the basic propagation mechanisms.			
b) Explain any two indoor propagation models.			
OR			
5. a)Write a note on reflection from dielectrics and Brewster angle.			
b) Explain Longley Ryce outdoor propagation model.			

6. a) Explain impulse response model of a multipath channel and derive relation bandwidth and received power.	nship between [6M]
banamath and received powers	[0]
b) Explain briefly about parameters of mobile multipath channels? OR	[4M]
7.a) Explain different types of small scale fading?	[4M]
b) Explain clarets model for flat fading?	[6M]
8.a) Write note on IEEE 802.11 architecture and services.	[5M]
b)Write note on Bluetooth and IEEE 802.15 standard.	[5M]
OR 9a) Explain briefly about IEEE 802.11 standards? b)Explain briefly about different specifications of IEEE 802.15.	[5M] [5M]
10.aWrite note on the specifications of HYPERLAN-2.	[5M]
b) Write note on GPRS and higher data rates. OR	[5M]
11.a)Explain the similarities between HYPERLAN 1 and HYPERLAN 2.	[6M]
b)Write short note on short messaging service in GSM.	[4M]

MODEL PAPER –III MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

IV B.Tech II Semester Examinations WIRELESS COMMUNICATIONS AND NETWORKS (R15A0432) (Electronics & Communication Engineering)

Time: 3 hours Max. Marks: 75marks

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 25 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks

[2M] [3M] [2M] [3M] [2M] [2M] [3M] [2M] [2M]
[4M]
[6M]
[6M]
[5M]
[6M]
[4M]
[6M]
[4M]

6. a) What are factors influencing small scale fading?	[6M]
b) Explain briefly about Two -ray Rayleigh fading model?	[6M]
OR	
7. a) Explain briefly about parameters of mobile multiparty channels.	
	[4M]
b) Explain simulation of Clarke and Guns fading model?	[6M]
8. a) Describe WLAN standards.	[5M]
b)	Write
note on IEEE 802.15 logical link control and adaptation protocol. OR	[5M]
9a) Explain briefly about IEEE 802.11 medium access control layer.	[5M]
b)Explain briefly about WLAN and Bluetooth.	[5M]
10. a) Explain briefly about mobile data networks.	
b) Write note on HYPERLAN specifications.	[5M]
	[5M]
OR	[6M]
11. a)Explain the frame format of Wireless ATM.	
b) Write short note on mobile application protocols.	[4M]

MODEL PAPER –IV MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

IV B.Tech II Semester Examinations WIRELESS COMMUNICATIONS AND NETWORKS (R15A0432) (Electronics & Communication Engineering)

Note: This question paper contains two parts A and B

Max. Marks: 75marks

Time: 3 hours

Part A is compulsory which carriers 25 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks. PART A (25 Marks) 1. a) What is intersystem handoff? [2] b) Discuss about Longley-Ryce Model. [3] c) Define Brewster angle. [2] d) What are the Time Dispersion Parameters of Multipath channels? [3] e) Discuss about advantages and disadvantages of WLAN. [2] f) Discuss about Ericsson Multiple Breakpoint Model. [3] g) Define Adjacent-channel Interference. [2] h) Define equalization. [3] i) List the advantages of WLAN. [2] j) Write about Hiper Lan WLL. [3] **PART - B (50 Marks)** 2. Explain the various types of Handoff processes available. [10] 3. Explain in detail about Trunking and Grade of Service. [10] 4. a) Explain knife Edge Diffraction Model. b) With neat diagrams explain the Free Space Propagation Model. [5+5] OR 5. Derive the Impulse response model of a Multipath channel. [10] 6. Discuss in detail different types of small scale fading. [10]

7. What is small scale fading? What are the factors influencing small scale fading? [10]					
8.	Explain LMS and Recursive Least Square algorithm. OR	[10]			
0	Derive the expression for Maximal Datic Combining Improvement	[10]			
9.	Derive the expression for Maximal Ratio Combining Improvement.	[10]			
10. a) Draw the configuration of IEEE802.11 architecture.					
b)	Explain the physical layer specifications of IEEE802.11 using infrared.	[5+5]			
	OR				
11. Co	mpare and contrast IEEE 802.11 a, b, g and n standards.	[10]			

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech IV Year II Semester Examinations, May - 2016 WIRELESS COMMUNICATION AND NETWORKS (Common to ECE, ETM)

Time:	3 Hours	Max		Max. Mark	Marks: 75	
		Answer any Five All Questions Carry		C9	KS	
1.a) b)	Briefly explain evol	ublic Switched Telephon lution of mobile radio cor nk control of Bluetooth.	nmunication.	V).	[7+8]	
2.a) b)		nk control of Bluetooth. It features of third generat	ion wireless netw	orks.	[7+8]	
	What is hand-off pro	of cell is very important a ocess? Explain the handagonal geometry, the co- = $i^2 + ij + j^2$.	off mechanism?		区 [4+4+7]	
4.a) b)		n FDMA and SDMA with e operation of spread spec			[7+8]	
5.a). b)		ut Traffic Routing in wire ut the development of wi			[7+8]	
6.a) b)		on and management is act et and frame formats in Is		(.	[7+8]	
		ments of Hyper LAN. TM with basic architectu	i 's'	! *· ⁻ [7+8	1	
1, USS		hannel system and Multi ation of OFDM signal.	channel system.	[7+8]	